On the Rank Function of the 3-dimensional Rigidity Matroid

نویسندگان

  • Bill Jackson
  • Tibor Jordán
چکیده

It is an open problem to find a good characterization for independence or, more generally, the rank function in the d-dimensional rigidity matroid of a graph when d ≥ 3. In this paper we give a brief survey of existing lower and upper bounds on the rank of the 3-dimensional rigidity matroid of a graph and introduce a new upper bound, which may lead to the desired good characterization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dress Conjectures on Rank in the 3-Dimensional Rigidity Matroid

A. Dress has made two conjectures concerning the rank function of the 3dimensional rigidity matroid. The first would give a min-max formula for this rank function and hence a good characterization for independence. We show that the first conjecture is false for all graphs with at least 56 vertices. On the other hand we show that the second conjecture and a modified form of the first conjecture ...

متن کامل

Maxwell-independence: a new rank estimate for the 3-dimensional generic rigidity matroid

The problem of combinatorially determining the rank of the 3-dimensional bar-joint rigidity matroid of a graph is an important open problem in combinatorial rigidity theory. Maxwell’s condition states that the edges of a graph G = (V,E) are independent in its d-dimensional generic rigidity matroid only if (a) the number of edges |E| ≤ d|V | − ( d+1 2 ) , and (b) this holds for every induced sub...

متن کامل

Rigid Two-Dimensional Frameworks with Two Coincident Points

Let G = (V,E) be a graph and u, v ∈ V be two distinct vertices. We give a necessary and sufficient condition for the existence of an infinitesimally rigid two-dimensional bar-and-joint framework (G, p), in which the positions of u and v coincide. We also determine the rank function of the corresponding modified generic rigidity matroid on ground-set E. The results lead to efficient algorithms f...

متن کامل

Generically globally rigid zeolites in the plane

A d-dimensional zeolite is a d-dimensional body-and-pin framework with a (d+1)-regular underlying graph G. That is, each body of the zeolite is incident with d+1 pins and each pin belongs to exactly two bodies. The corresponding d-dimensional combinatorial zeolite is a bar-and-joint framework whose graph is the line graph of G. We show that a two-dimensional combinatorial zeolite is generically...

متن کامل

Algorithms for the d-Dimensional Rigidity Matroid of Sparse Graphs

Let Rd(G) be the d-dimensional rigidity matroid for a graph G = (V, E). For X ⊆ V let i(X) be the number of edges in the subgraph of G induced by X. We derive a min-max formula which determines the rank function in Rd(G) when G has maximum degree at most d+ 2 and minimum degree at most d+1. We also show that if d is even and i(X) ≤ 12 [(d+2)|X|− (2d+2)] for all X ⊆ V with |X| ≥ 2 then E is inde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Geometry Appl.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006